Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis.
نویسندگان
چکیده
Metabolomics is facing a major challenge: the lack of knowledge about metabolites present in a given biological system. Thus, large-scale discovery of metabolites is considered an essential step toward a better understanding of plant metabolism. We show here that the application of a metabolomics approach generating structural information for the analysis of Arabidopsis (Arabidopsis thaliana) mutants allows the efficient cataloging of metabolites. Fifty-six percent of the features that showed significant differences in abundance between seeds of wild-type, transparent testa4, and transparent testa5 plants could be annotated. Seventy-five compounds were structurally characterized, 21 of which could be identified. About 40 compounds had not been known from Arabidopsis before. Also, the high-resolution analysis revealed an unanticipated expansion of metabolic conversions upstream of biosynthetic blocks. Deficiency in chalcone synthase results in the increased seed-specific biosynthesis of a range of phenolic choline esters. Similarly, a lack of chalcone isomerase activity leads to the accumulation of various naringenin chalcone derivatives. Furthermore, our data provide insight into the connection between p-coumaroyl-coenzyme A-dependent pathways. Lack of flavonoid biosynthesis results in elevated synthesis not only of p-coumarate-derived choline esters but also of sinapate-derived metabolites. However, sinapoylcholine is not the only accumulating end product. Instead, we observed specific and sophisticated changes in the complex pattern of sinapate derivatives.
منابع مشابه
Molecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملIn silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma
As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...
متن کاملIsolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)
In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...
متن کاملDiscovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity.
As a monophyletic group, the myxobacteria are known to produce a broad spectrum of secondary metabolites. However, the degree of metabolic diversity that can be found within a single species remains unexplored. The model species Myxococcus xanthus produces several metabolites also present in other myxobacterial species, but only one compound unique to M. xanthus has been found to date. Here, we...
متن کاملIn-silico Metabolome Target Analysis Towards PanC-based Antimycobacterial Agent Discovery
Mycobacterium tuberculosis, the main cause of tuberculosis (TB), has still remained a global health crisis especially in developing countries. Tuberculosis treatment is a laborious and lengthy process with high risk of non compliance, cytotoxicity adverse events and drug resistance in patient. Recently, there has been an alarming rise of drug resistant in TB. In this regard, it is an unmet need...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 147 4 شماره
صفحات -
تاریخ انتشار 2008